



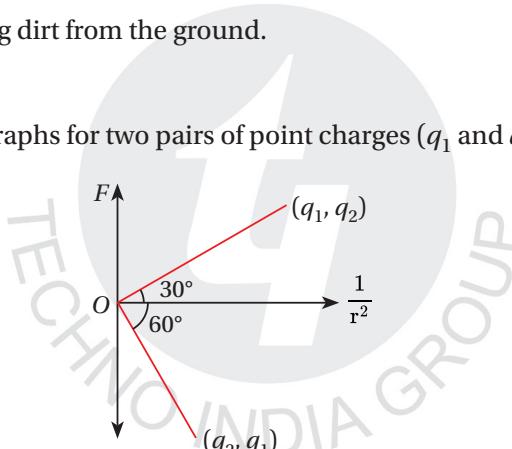
# CBSE NCERT Based Chapter wise Questions (2025-2026)

Class-XII

Subject: Physics

Chapter Name : *Electric Charges and Field* (Chapter : 1)

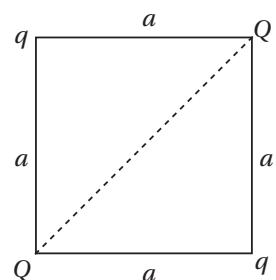
Total : 07 Marks (expected) [MCQ(2)-1 Mark, SA(1)-2 Marks, LA(1)-3 Marks]


Level - 1

## MCQ Type Questions :

- When a negative charge (-Q) is brought near one face of a metal cube, the
  - cube becomes positively charged
  - cube becomes negatively charged
  - face near the charge becomes positively charged and the opposite face becomes negatively charged
  - face near the charge becomes negatively charged and the opposite face becomes positively charged

[CBSE 23C]


- The vehicles carrying inflammable fluids usually have metallic chains touching the ground
  - to conduct excess charge due to air friction to the ground and prevent sparking
  - to alert other vehicles.
  - to protect tyres from catching dirt from the ground.
  - as it is a custom.
- Coulomb force  $F$  versus  $\left(\frac{1}{r^2}\right)$  graphs for two pairs of point charges ( $q_1$  and  $q_2$ ) and ( $q_2$  and  $q_1$ ) are shown in the figure.



The ratio of charges  $\left(\frac{q_1}{q_3}\right)$  is

- $\sqrt{3}$
- $\frac{1}{\sqrt{3}}$
- 3
- $\frac{1}{3}$

- Four charges as shown in figure are placed at the corners of a square of side length  $a$ . What is the ratio of  $(Q/q)$  if net force on  $Q$  is zero?
  - $\frac{1}{2\sqrt{2}}$
  - $-2\sqrt{2}$
  - $\frac{1}{\sqrt{2}}$
- A particle of mass  $m$  and charge  $q$  is placed at rest in a uniform electric field  $E$  and then released, the kinetic energy attained by the particle after moving a distance  $y$  will be
  - $q^2 E y$
  - $q E y$
  - $q E^2 y$
  - $q E y^2$



6. A point charge of  $10 \mu\text{C}$  is placed at the origin. At what location on the  $X$ -axis should a point charge of  $40 \mu\text{C}$  be placed so that the net electric field is zero at  $x = 2 \text{ cm}$  on the  $X$ -axis?  
 (A)  $x = 6 \text{ cm}$       (B)  $x = 4 \text{ cm}$       (C)  $x = 8 \text{ cm}$       (D)  $x = -4 \text{ cm}$

7. A thin plastic rod is bent into a circular ring of radius  $R$ . It is uniformly charged with charge density  $\lambda$ . The magnitude of the electric field at its centre is  
 (A)  $\frac{\lambda}{2\epsilon_0 R}$       (B) zero      (C)  $\frac{\lambda}{4\pi\epsilon_0 R}$       (D)  $\frac{\lambda}{4\epsilon_0 R}$

[CBSE OD 24]

8. A point charge situated at a distance ' $r$ ' from a short electric dipole on its axis, experiences a force  $\vec{F}$ . If the distance of the charge is ' $2r$ ', the force on the charge will be  
 (A)  $\frac{\vec{F}}{16}$       (B)  $\frac{\vec{F}}{8}$       (C)  $\frac{\vec{F}}{4}$       (D)  $\frac{\vec{F}}{2}$

[CBSE OD 23]

### Assertion-Reason based questions

a) Both Assertion and Reason are correct and Reason is a correct explanation of Assertion  
 b) Both Assertion and Reason are correct and Reason is not a correct explanation of Assertion  
 c) Assertion is correct, Reason is incorrect  
 d) Assertion is incorrect, Reason is correct

9. **Assertion:** The coulomb force is the dominating force in the universe.  
**Reason:** The coulomb force is weaker than the gravitational force. [AMMS 03]

(A) a      (B) b      (C) c      (D) d

10. **Assertion:** The tyres of aircrafts are made slightly conducting.  
**Reason:** If a conductor is connected to the ground, the extra charge induced on the conductor will flow to the ground.  
 (A) a      (B) b      (C) c      (D) d

11. **Assertion:** In a non-uniform electric field, a dipole will have translatory as well as rotatory motion.  
**Reason:** In a non-uniform electric field, a dipole experiences a force as well as a torque. [CBSE SP 21]

(A) a      (B) b      (C) c      (D) d

### Short Answer Type Questions (SAQ)

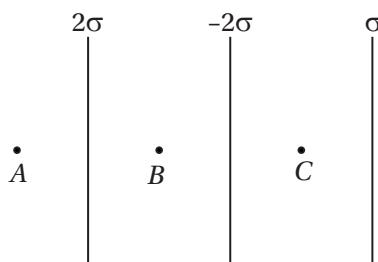
12. State Gauss theorem in electrostatics.

13. When does an electric dipole placed in a non uniform electric field experience a zero torque but non zero force? Explain.

14. What is the electric flux through a cube of side 1 cm? Which encloses an electric dipole?

15. Two fixed point charges  $+4e$  and  $+e$  units are separated by a distance  $a$ . Where should a third charge  $q$  be placed for it to be in equilibrium?

16. Define volume charge density at a point write its SI unit.


17. What is the angle between the directions of electric field at any (i) axial point and (ii) equitorial point due to an electric dipole.

### Long Answer Type Questions (LAQ)

18. An electric dipole is placed in a uniform electric field. Derive expression for torque acting on it.

19. Gauss's law is based on the inverse-square dependence on distance contained in the coulomb's Law. Explain.

20. There are three infinite long thin sheets having surface charge density  $+2\sigma$ ,  $-2\sigma$  and  $\sigma$  respectively. Give the magnitude and direction at the points A, B and C.



21. Use Gauss's law to derive the expression for the electric field ( $\vec{E}$ ) due to a straight uniformly charged infinite line of charge infinite line.

22. Draw the lines of forces for the following cases.

- (i) two point charges  $q_1$  and  $q_2$  ( $q_1 > q_2$ ) placed at short separation.
- (ii) for a electric dipole
- (iii) uniform electric field

## ANSWER

|      |       |       |                      |                                        |
|------|-------|-------|----------------------|----------------------------------------|
| 1. C | 6. A  | 11. A | 16.                  | 20. zero                               |
| 2. A | 7. B  | 12.   | 17.                  | 21. $12 \text{Vm}^{-1}$                |
| 3. D | 8. B  | 13.   | 18.                  | 22. $1.125 \times 10^7 \text{NC}^{-1}$ |
| 4. B | 9. D  | 14.   | 19. $\frac{3Ee}{2m}$ |                                        |
| 5. B | 10. A | 15.   |                      |                                        |

