

CBSE NCERT Based Chapter wise Questions (2025-2026)

Class-XII

Subject: Mathematics

Total : 11 Marks (expected) [MCQ-1 Mark, VSA-2 Marks, SA-3 Marks, LA-5 Marks]

Chapter Name : *Differential Equations* (Chap : 9)

Level 1 & 2 Combined

SECTION - A

MCQ Type (1 mark each):

1. The order of the differential equation $\left(\frac{d^4y}{dx^4}\right)^3 - \frac{d^3y}{dx^3} = \sqrt{1 - \frac{dy}{dx}}$ is

(A) 6 (B) 4 (C) 3 (D) 7

[Hints : Topic order and degree.]

2. Let x be the number of independent arbitrary constants in the general solution of a differential equation of y ; then

(A) $x = y$ (B) $x > y$ (C) $x < y$ (D) $x \geq y$

[Hints : Theorem on order and number of constants.]

3. The order of the differential equation contained by elimination of arbitrary constants from the equation $ax + by + c = 0$, $c \neq 0$ is

(A) 2 (B) 3 (C) 1 (D) None

[Hints : Theorem on order and arbitrary constants.]

4. The integrating factor of the differential equation $x \frac{dy}{dx} - y = x^2$

(A) $\frac{1}{x}$ (B) e^x (C) $e^{2\log x}$ (D) $e^{-2\log x}$

[Hints : Linear differential equation.]

5. In the linear differential equation of the form $\frac{dy}{dx} + Py = Q$

(A) Q is a constant (B) Q is constant or function of x
(C) Q is a factor of x (D) Q is a function of both x and y

[Hints : Linear differential equation-general form]

6. The integrating factor of the differential equation $\frac{dy}{dx} + Py = Q$ is

(A) e^x (B) e^{Px} (C) $e^{\int P dx}$ (D) None

[Hints : Integrating factor of linear differential equation]

7. To solve the differential equation $\frac{dx}{dy} + Px = Q$, we multiply both sides of the equation by

(A) e^{Py} (B) e^{Px} (C) $e^{\int P dx}$ (D) $e^{\int P dy}$

[Hints : Linear differential equation 2nd form.]

SECTION - B

Very Short Answer (VSA) (2 marks each questions):

1. Prove that, $x = A \cos \sqrt{\mu} t$ is a solution of the differential equation $\frac{d^2x}{dt^2} + \mu x = 0$.

[Hints : Verification of differential equation.]

2. Show that the differential equation $\frac{dy}{dx} = y$ is formed by eliminating a and b from the relation $y = ae^{bx}$.

[Hints : Elimination of arbitrary constants]

3. Solve: $\frac{dy}{dx} = 1 - x + y - xy$

[Hints : Variable separable.]

4. Solve: $dx - dy + ydx + xdy = 0$.

[Hints : $d(xy) = xdy + ydx$]

5. Find the differential equation of the family of circles $x^2 + y^2 = 2ax$, where a is a parameter.

[Hints : Eliminating a by differentiating both sides w.r.t x one.]

6. Form the differential equation representing the family of curves $y = A \cos (x + B)$, where a and B are parameters.

[Hints : Formation of differential equation.]

7. Show that $V = \frac{A}{r} + B$ satisfies the differential equation $\frac{d^2V}{dr^2} + \frac{2}{r} \cdot \frac{dV}{dr} = 0$.

[Hints : Formation of differential equation from the given equation.]

SECTION - C

Short Answer (SA) (3 marks each questions):

1. Form the differential equation by eliminating a and b $x = e^{-t} (a \cos t + b \sin t)$.

[Hints : Formation of differential equation.]

2. Solve: $(ax + hy + g)dx + (bx + by + f)dy = 0$

[Hints : Homogeneous differential equation.]

3. Show that, the general solution of the equation $dy = y \log y dx$ is $y = C \left(\frac{x}{e} \right)^x$, where e is arbitrary constant.

[Hints : Variable separable.]

4. Solve: $(x^2y^3 + 2xy) dy = dx$

[Hints : Linear differential equation.]

5. $\frac{dy}{dx} = \frac{x\sqrt{x^2 - 1} + y}{\sqrt{x^2 - 1}}$; $y = 1, x = 1$

[Hints : Linear differential equation.]

6. A particle starts with the velocity v and moves in a straight line, its acceleration being always equal to its displacement. If v be the velocity when its displacement is x , then show that, $v^2 = u^2 + x^2$.

[Hints : Application of differential equation.]

7. $x^2 + y^2 = \log(y dy) - \log(x dx)$

[Hints : Variable separable]

SECTION - D

Long Answer (LA) (5 marks each questions):

1. Solve: $\frac{dy}{dx} + \frac{y}{(1-x^2)^{3/2}} = \frac{x+\sqrt{1-x^2}}{(1-x^2)^2}$

[Hints : Linear differential equation.]

2. Solve: $(1 + \tan y)(dx - dy) + 2x dy = 0$

[Hints : Linear form.]

3. A curve passes through the point $(2, 0)$ and satisfies the equation $y dy + x dx = 0$, show that the curve is a circle with radius 2 unit.

[Hints : Application of differential equation.]

4. The marginal cost function of manufacturing x pairs of shoes is $\text{₹}(6 + 10x - 6x^2)$. The total cost of producing a pair of shoes is $\text{₹}12$. Find the total and average cost function.

[Hints : Application of differential equation.]

5. Solve: $\frac{dy}{dx} = \frac{x+y}{x}; y(1) = 1$

[Hints : Homogeneous differential equation.]

6. The solution of the equation $\frac{d^2y}{dx^2} = e^{-2x}$.

[Hints : Concept of integration.]

7. Solve: $(1+x^2) \frac{dy}{dx} + 2xy = 4x^2, y(0) = 0$

[Hints : Linear differential equation.]

ANSWER

MCQs →

1. (B)
2. (A)
3. (A)
4. (A)
5. (B)
6. (C)
7. (D)

VSA →

3. $\log|x+y| = x - \frac{x^2}{2} + C$

4. $(x-1)^2(y+1)^2 = C$

5. $2xy \frac{dy}{dx} = y^2 - x^2$

6. $\frac{d^2y}{dx^2} + y = 0$

SA →

1. $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 2x = 0$

2. $ax^2 + 2hxy + by^2 + 2gx + 2fy + C = 0$.

4. $\frac{1}{x} = \frac{1}{2}(1 - y^2) + Ce^{-y^2}$

5. $y\left(x - \sqrt{x^2 - 1}\right) = \frac{1}{3}\left[\left(x^3 - (x^2 - 1)^{\frac{3}{2}}\right) + \frac{2}{3}\right]$

7. $e^{x^2} + e^{-y^2} + C = 0$

LA →

1. $y = \frac{x}{\sqrt{1-x^2}} + Ce^{-\frac{x}{\sqrt{1-x^2}}}$

2. $(\cos y + \sin y)x = \sin y + Ce^{-y}$

3. 2 unit

4. $\bar{x}(3 + 6x + 5x^2 - 2x^3)$ and $(6 + 5x - 2x^2 + \frac{3}{x})$

5. $x|hx + x$

6. $\frac{e^{-2x}}{4} + Cx + d$

7. $3(1 + x^2)y = 4x^3$

